翻訳と辞書
Words near each other
・ Beta Theta Pi Fraternity House (Champaign, Illinois)
・ Beta Theta Pi Fraternity House (Chapel Hill, North Carolina)
・ Beta thymosins
・ Beta Trianguli
・ Beta Trianguli Australis
・ Beta Tucanae
・ Beta turn
・ Beta Upsilon Chi
・ Beta Ursae Majoris
・ Beta Ursae Minoris
・ Beta Virginis
・ Beta Volantis
・ Beta Vukanović
・ Beta vulgaris
・ Beta wave
Beta wavelet
・ Beta Xi chapter of Sigma Chi
・ Beta, North Carolina
・ Beta-(1-pyrazolyl)alanine synthase
・ Beta-1 adrenergic receptor
・ Beta-1,3-N-acetylglucosaminyltransferase 3
・ Beta-2 adrenergic receptor
・ Beta-2 microglobulin
・ Beta-2 transferrin
・ Beta-2-Thienylalanine
・ Beta-3 adrenergic receptor
・ Beta-actin
・ Beta-adrenergic agonist
・ Beta-adrenergic-receptor kinase
・ Beta-Ala-His dipeptidase


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Beta wavelet : ウィキペディア英語版
Beta wavelet
Continuous wavelets of compact support can be built (), which are related to the beta distribution. The process is derived from probability distributions using blur derivative. These new wavelets have just one cycle, so they are termed unicycle wavelets. They can be viewed as a ''soft variety'' of Haar wavelets whose shape is fine-tuned by two parameters \alpha and \beta. Closed-form expressions for beta wavelets and scale functions as well as their spectra are derived. Their importance is due to the Central Limit Theorem by Gnedenko and Kolmogorov applied for compactly supported signals ().
== Beta distribution ==

The beta distribution is a continuous probability distribution defined over the interval 0\leq t\leq 1. It is characterised by a couple of parameters, namely \alpha and \beta according to:
P(t)=\fract^\cdot (1-t)^,\quad 1\leq \alpha ,\beta \leq +\infty .
The normalising factor is B(\alpha ,\beta )=\frac,
where \Gamma (\cdot ) is the generalised factorial function of Euler and B(\cdot ,\cdot ) is the Beta function ().

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Beta wavelet」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.